Home | About | Nuclear Jobs | Nuclear Resumes | Nuclear Employers | Nuclear Job Descriptions | Articles | Post Jobs | Contact

Nuclear Radiation

Nuclear Radiation

Nuclear radiation is ionizing radiation caused by a nuclear weapon being detonated. The release of radiation is a phenomenon unique to nuclear explosions. There are several kinds of radiation emitted; these types include gamma, neutron, and ionizing radiation, and are emitted not only at the time of detonation (initial radiation) but also for long periods of time afterward (residual radiation).

Nuclear radiation can be both extremely beneficial and extremely dangerous. It just depends on how you use it. Nuclear materials (that is, substances that emit nuclear radiation) are fairly common and have found their way into our normal vocabularies in many different ways.

The "Nuclear" in "Nuclear Radiation"

Let's start at the beginning and understand where the word "nuclear" in "nuclear radiation" comes from. Here is something you should already feel comfortable with: Everything is made of atoms. Atoms bind together into molecules. So a water molecule is made from two hydrogen atoms and one oxygen atom bound together into a single unit. Because we learn about atoms and molecules in elementary school, we understand and feel comfortable with them. In nature, any atom you find will be one of 92 types of atoms, also known as elements. So every substance on Earth -- metal, plastics, hair, clothing, leaves, glass -- is made up of combinations of the 92 atoms that are found in nature. The Periodic Table of Elements you see in chemistry class is a list of the elements found in nature plus a number of man-made elements.

Inside every atom are three subatomic particles: protons, neutrons and electrons. Protons and neutrons bind together to form the nucleus of the atom, while the electrons surround and orbit the nucleus. Protons and electrons have opposite charges and therefore attract one another (electrons are negative and protons are positive, and opposite charges attract), and in most cases the number of electrons and protons are the same for an atom (making the atom neutral in charge). The neutrons are neutral. Their purpose in the nucleus is to bind protons together. Because the protons all have the same charge and would naturally repel one another, the neutrons act as "glue" to hold the protons tightly together in the nucleus.

The number of protons in the nucleus determines the behavior of an atom. For example, if you combine 13 protons with 14 neutrons to create a nucleus and then spin 13 electrons around that nucleus, what you have is an aluminum atom. If you group millions of aluminum atoms together you get a substance that is aluminum -- you can form aluminum cans, aluminum foil and aluminum siding out of it. All aluminum that you find in nature is called aluminum-27. The "27" is the atomic mass number -- the sum of the number of neutrons and protons in the nucleus. If you take an atom of aluminum and put it in a bottle and come back in several million years, it will still be an atom of aluminum. Aluminum-27 is therefore called a stable atom. Up to about 100 years ago, it was thought that all atoms were stable like this.

Many atoms come in different forms. For example, copper has two stable forms: copper-63 (making up about 70 percent of all natural copper) and copper-65 (making up about 30 percent). The two forms are called isotopes. Atoms of both isotopes of copper have 29 protons, but a copper-63 atom has 34 neutrons while a copper-65 atom has 36 neutrons. Both isotopes act and look the same, and both are stable.

The part that was not understood until about 100 years ago is that certain elements have isotopes that are radioactive. In some elements, all of the isotopes are radioactive. Hydrogen is a good example of an element with multiple isotopes, one of which is radioactive. Normal hydrogen, or hydrogen-1, has one proton and no neutrons (because there is only one proton in the nucleus, there is no need for the binding effects of neutrons). There is another isotope, hydrogen-2 (also known as deuterium), that has one proton and one neutron. Deuterium is very rare in nature (making up about 0.015 percent of all hydrogen), and although it acts like hydrogen-1 (for example, you can make water out of it) it turns out it is different enough from hydrogen-1 in that it is toxic in high concentrations. The deuterium isotope of hydrogen is stable. A third isotope, hydrogen-3 (also known as tritium), has one proton and two neutrons. It turns out this isotope is unstable. That is, if you have a container full of tritium and come back in a million years, you will find that it has all turned into helium-3 (two protons, one neutron), which is stable. The process by which it turns into helium is called radioactive decay.

Certain elements are naturally radioactive in all of their isotopes. Uranium is the best example of such an element and is the heaviest naturally occurring radioactive element. There are eight other naturally radioactive elements: polonium, astatine, radon, francium, radium, actinium, thorium and protactinium. All other man-made elements heavier than uranium are radioactive as well.

Nuclear radiation (biology)

Nuclear radiations are used in biology because of their common property of ionizing matter. This makes their detection relatively simple, or makes possible the production of biological effects in any living cell. Ionizing radiation is any electromagnetic or particulate radiation capable of producing ions, directly or indirectly, in its passage through matter.

All ionizing radiations produce biological changes, directly by ionization or excitation of the atoms in the molecules of biological entities, such as in chromosomes, or indirectly by the formation of active radicals or deleterious agents, through ionization and excitation, in the medium surrounding the biological entities. Ionizing radiation, having high penetrating power, can reach the most vulnerable part of a cell, an organ, or a whole organism, and is thus very effective. In terms of the energy absorbed per unit mass of a biological entity in which an effect is produced, some ionizing radiations are more effective than others. The relative biological effectiveness (RBE) depends in fact on the density of ionization (also termed the specific ionization or linear energy transfer, LET) along the path of the ionizing particle rather than on the nature of the particle itself. Relative biological effectiveness depends also on many other factors. See also Radiation biology.

The medical uses of nuclear radiations may be divided into three distinct classes:

  • The radiations, which are principally x-rays, are used to study the anatomical configuration of body organs, usually for the purpose of detecting abnormalities as an aid in diagnosis.

  • The radiations are used for therapeutic purposes to produce biological changes in such tissues as tumors.

  • The radiations are used as a simple means of tracing a suitable radioactive substance through different steps in its course through the body, in the study of some particular physiological process.

Radioactive Decay

Radioactive decay is a natural process. An atom of a radioactive isotope will spontaneously decay into another element through one of three common processes:

• Alpha decay

• Beta decay

• Spontaneous fission

In the process, four different kinds of radioactive rays are produced:

• Alpha rays

• Beta rays

• Gamma rays

• Neutron rays

Americium-241, a radioactive element best known for its use in smoke detectors, is a good example of an element that undergoes alpha decay. An americium-241 atom will spontaneously throw off an alpha particle. An alpha particle is made up of two protons and two neutrons bound together, which is the equivalent of a helium-4 nucleus. In the process of emitting the alpha particle, the americium-241 atom becomes a neptunium-237 atom. The alpha particle leaves the scene at a high velocity -- perhaps 10,000 miles per second (16,000 km/sec).

If you were looking at an individual americium-241 atom, it would be impossible to predict when it would throw off an alpha particle. However, if you have a large collection of americium atoms, then the rate of decay becomes quite predictable. For americium-241, it is known that half of the atoms decay in 458 years. Therefore, 458 years is the half-life of americium-241. Every radioactive element has a different half-life, ranging from fractions of a second to millions of years, depending on the specific isotope. For example, americium-243 has a half-life of 7,370 years.

Tritium (hydrogen-3) is a good example of an element that undergoes beta decay. In beta decay, a neutron in the nucleus spontaneously turns into a proton, an electron, and a third particle called an antineutrino. The nucleus ejects the electron and antineutrino, while the proton remains in the nucleus. The ejected electron is referred to as a beta particle. The nucleus loses one neutron and gains one proton. Therefore, a hydrogen-3 atom undergoing beta decay becomes a helium-3 atom.

In spontaneous fission, an atom actually splits instead of throwing off an alpha or beta particle. The word "fission" means "splitting." A heavy atom like fermium-256 undergoes spontaneous fission about 97 percent of the time when it decays, and in the process, it becomes two atoms. For example, one fermium-256 atom may become a xenon-140 and a palladium-112 atom, and in the process it will eject four neutrons (known as "prompt neutrons" because they are ejected at the moment of fission). Other atoms and cause nuclear reactions, such as decay or fission, can absorb these neutrons or they can collide with other atoms, like billiard balls And cause gamma rays to be emitted.

Neutron radiation can be used to make non-radioactive atoms become radioactive; this has practical applications in nuclear medicine. Neutron radiation is also made from nuclear reactors in power plants and nuclear-powered ships and in particle accelerators, devices used to study subatomic physics.

In many cases, a nucleus that has undergone alpha decay, beta decay or spontaneous fission will be highly energetic and therefore unstable. It will eliminate its extra energy as an electromagnetic pulse known as a gamma ray. Gamma rays are like X-rays in that they penetrate matter, but they are more energetic than X-rays. Gamma rays are made of energy, not moving particles like alpha and beta particles.

While on the subject of various rays, there are also cosmic rays bombarding the Earth at all times. Cosmic rays originate from the sun and also from things like exploding stars. The majority of cosmic rays (perhaps 85 percent) are protons traveling near the speed of light, while perhaps 12 percent are alpha particles traveling very quickly. It is the speed of the particles, by the way, that gives them their ability to penetrate matter. When they hit the atmosphere, they collide with atoms in the atmosphere in various ways to form secondary cosmic rays that have less energy. These secondary cosmic rays then collide with other things on Earth, including humans. We get hit with secondary cosmic rays all of the time, but we are not injured because these secondary rays have lower energy than primary cosmic rays. Primary cosmic rays are a danger to astronauts in outer space.

A "Natural" Danger

Although they are "natural" in the sense that radioactive atoms naturally decay and radioactive elements are a part of nature, all radioactive emissions are dangerous to living things. Alpha particles, beta particles, neutrons, gamma rays and cosmic rays are all known as ionizing radiation, meaning that when these rays interact with an atom they can knock off an orbital electron. The loss of an electron can cause problems, including everything from cell death to genetic mutations (leading to cancer), in any living thing.

Because alpha particles are large, they cannot penetrate very far into matter. They cannot penetrate a sheet of paper, for example, so when they are outside the body they have no effect on people. If you eat or inhale atoms that emit alpha particles, however, the alpha particles can cause quite a bit of damage inside your body.

Beta particles penetrate a bit more deeply, but again are only dangerous if eaten or inhaled; a sheet of aluminum foil or Plexiglas can stop beta particles. Gamma rays, like X-rays, are stopped by lead.

Neutrons, because they lack charge, penetrate very deeply, and are best stopped by extremely thick layers of concrete or liquids like water or fuel oil. Gamma rays and neutrons, because they are so penetrating, can have severe effects on the cells of humans and other animals. You may have heard at some point of a nuclear device called a neutron bomb. The whole idea of this bomb is to optimize the production of neutrons and gamma rays so that the bomb has its maximum effect on living things.

As we have seen, radioactivity is "natural," and we all contain things like radioactive carbon-14. There are also a number of man-made nuclear elements in the environment that are harmful. Nuclear radiation has powerful benefits, such as nuclear power to generate electricity and nuclear medicine to detect and treat disease, as well as significant dangers.

Initial Nuclear Radiation

Initial nuclear radiation is defined as the radiation that arrives during the first minute after an explosion, and is mostly gamma radiation and neutron radiation.

The level of initial nuclear radiation decreases rapidly with distance from the fireball to where less than one roentgen may be received five miles from ground zero. In addition, initial radiation lasts only as long as nuclear fission occurs in the fireball. Initial nuclear radiation represents about 3 percent of the total energy in a nuclear explosion.

Though people close to ground zero may receive lethal doses of radiation, they are concurrently being killed by the blast wave and thermal pulse. In typical nuclear weapons, only a relatively small proportion of deaths and injuries result from initial radiation.

Residual Nuclear Radiation

The residual radiation from a nuclear explosion is mostly from the radioactive fallout. This radiation comes from the weapon debris, fission products, and, in the case of a ground burst, radiated soil.

There are over 300 different fission products that may result from a fission reaction. Many of these are radioactive with widely differing half-lives. Some are very short, i.e., fractions of a second, while a few are long enough that the materials can be a hazard for months or years. Their principal mode of decay is by the emission of beta particles and gamma radiation.

If atomic nuclei capture neutrons when exposed to a flux of neutron radiation, they will, as a rule, become radioactive (neutron-induced activity) and then decay by emission of beta and gamma radiation over an extended period of time. Neutrons emitted as part of the initial nuclear radiation will cause activation of the weapon residues. In addition, atoms of environmental material, such as soil, air, and water, may be activated, depending on their composition and distance from the burst. For example, a small area around ground zero may become hazardous as a result of exposure of the minerals in the soil to initial neutron radiation.

After an air burst the fission products, unfissioned nuclear material, and weapon residues which have been vaporized by the heat of the fireball will condense into a fine suspension of very small particles 0.01 to 20 micrometers in diameter. These particles may be quickly drawn up into the stratosphere, particularly so if the explosive yield exceeds 10 Kt. They will then be dispersed by atmospheric winds and will gradually settle to the earth's surface after weeks, months, and even years as worldwide fallout. The radiobiological hazard of worldwide fallout is essentially a long-term one due to the potential accumulation of long-lived radioisotopes, such as strontium-90 and cesium-137, in the body as a result of ingestion of foods which had incorporated these radioactive materials. This hazard is much less serious than those which are associated with local fallout and, therefore, is not discussed at length in this publication. Local fallout is of much greater immediate operational concern.

In a land or water surface burst, large amounts of earth or water will be vaporized by the heat of the fireball and drawn up into the radioactive cloud. This material will become radioactive when it condenses with fission products and other radiocontaminants or has become neutron-activated. There will be large amounts of particles of less than 0.1 micrometer to several millimeters in diameter generated in a surface burst in addition to the very fine particles which contribute to worldwide fallout. The larger particles will not rise into the stratosphere and consequently will settle to earth within about 24 hours as local fallout. Severe local fallout contamination can extend far beyond the blast and thermal effects, particularly in the case of high yield surface detonations. Whenever individuals remain in a radiologically contaminated area, such contamination will lead to an immediate external radiation exposure as well as a possible later internal hazard due to inhalation and ingestion of radiocontaminants. In severe cases of fallout contamination, lethal doses of external radiation may be incurred if protective or evasive measures are not undertaken. In cases of water surface (and shallow underwater) bursts, the particles tend to be rather lighter and smaller and so produce less local fallout but will extend over a greater area. The particles contain mostly sea salts with some water; these can have a cloud seeding affect causing local rainout and areas of high local fallout. For subsurface bursts, there is an additional phenomenon present called "base surge." The base surge is a cloud that rolls outward from the bottom of the column produced by a subsurface explosion. For underwater bursts the visible surge is, in effect, a cloud of liquid (water) droplets with the property of flowing almost as if it were a homogeneous fluid. After the water evaporates, an invisible base surge of small radioactive particles may persist. For subsurface land bursts, the surge is made up of small solid particles, but it still behaves like a fluid. A soil earth medium favors base surge formation in an underground burst.

Meteorological conditions will greatly influence fallout, particularly local fallout. Atmospheric winds are able to distribute fallout over large areas. Snow and rain, especially if they come from considerable heights, will accelerate local fallout. Under special meteorological conditions, such as a local rain shower that originates above the radioactive cloud, limited areas of heavy contamination may be formed.

Lethal Dose of Nuclear Radiation

When comparing the effects of radiation, that dose which is lethal to 50% of a given population is a very useful parameter. The term is usually defined for a specific time, being limited, generally, to studies of acute lethality. The common time periods used are 30 days or less for most small laboratory animals and to 60 days for large animals and humans. On occasion, when a specific type of death is being studied, the time period used will be shorter. A second number in the subscript indicates the specified period of time; LD50/30 and LD50/5 indicate 50% mortality within 30 days and 5 days, respectively. The LD50 is a median.

Next >
Search Nuclear Jobs:
NukeJobs, Inc © 2020 - Nuclear Jobs Locator


NukeJobs is a nuclear jobs board that provides nuclear job seekers access to international directories of Nuclear Employers, Nuclear Resumes and Nuclear Jobs such as Nuclear Engineer Jobs, Nuclear Construction Jobs, Nuclear Power Plant Jobs, Nuclear Medicine Jobs, Nuclear Pharmacy Jobs, Nuclear Security Jobs, Nuclear Physics Jobs, Nuclear Reactor Jobs, Nuclear Material Jobs, Nuclear Safety Jobs, and Nuclear Waste Jobs.